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Abstract. We discuss the difficulties caused by mobile computing and mobile com-
putation over wide area networks. We propose a unified framework for overcoming
such difficulties.

1  Introduction
The Internet and the World-Wide-Web provide a computational infrastructure that spans
the planet. It is appealing to imagine writing programs that exploit this global infrastruc-
ture. Unfortunately, the Web violates many familiar assumptions about the behavior of dis-
tributed systems, and demands novel and specialized programming techniques. In
particular, three phenomena that remain largely hidden in local area network architectures
become readily observable on the Web:

• (A) Virtual locations. Because of the presence of potential attackers, barriers are
erected between mutually distrustful administrative domains. Therefore, a program
must be aware of where it is, and of how to move or communicate between different
domains. The existence of separate administrative domains induces a notion of vir-
tual locations and of virtual distance between locations. 

• (B) Physical locations. On a planet-size structure, the speed of light becomes tan-
gible. For example, a procedure call to the antipodes requires at least 1/10 of a sec-
ond, independently of future improvements in networking technology. This
absolute lower bound to latency induces a notion of physical locations and physical
distance between locations.

• (C) Bandwidth fluctuations. A global network is susceptible to unpredictable con-
gestion and partitioning, which result in fluctuations or temporary interruptions of
bandwidth. Moreover, mobile devices may perceive bandwidth changes as a conse-
quence of physical movement. Programs need to be able to observe and react to
these fluctuations.

These features may interact among themselves. For example, bandwidth fluctuations may
be related to physical location because of different patterns of day and night network utili-
zation, and to virtual location because of authentication and encryption across domain
boundaries. Virtual and physical locations are often related, but need not coincide.

In addition, another phenomenon becomes unobservable on the Web:

• (D) Failures. On the Web, there is no practical upper bound to communication de-
lays. In particular, failures become indistinguishable from long delays, and thus un-
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detectable. Failure recovery becomes indistinguishable from intermittent
connectivity. Furthermore, delays (and, implicitly, failures) are frequent and unpre-
dictable.

These four phenomena determine the set of observables of the Web: the events or
states that can be in principle detected. Observables, in turn, influence the basic building
blocks of computation. In moving from local area networks to wide area networks, the set
of observables changes, and so does the computational model, the programming constructs,
and the kind of programs one can write. The question of how to “program the Web” reduces
to the question of how to program with the new set of observables provided by the Web. 

At least one general technique has emerged to cope with the observables characteristic
of a wide area network such as the Web. Mobile computation is the notion that running pro-
grams need not be forever tied to a single network node. Mobile computation can deal in
original ways with the phenomena described above:

• (A) Virtual locations. Given adequate trust mechanisms, mobile computations can
cross barriers and move between virtual locations. Barriers are designed to impede
access, but when code is allowed to cross them, it can access local resources without
the impediment of the barriers.

• (B) Physical locations. Mobile computations can move between physical locations,
turning remote calls into local calls, and thus avoiding the latency limit.

• (C) Bandwidth fluctuations. Mobile computations can react to bandwidth fluctua-
tions, either by moving to a better-placed location, or by transferring code that es-
tablishes a customized protocol over a connection.

• (D) Failures. Mobile computations can run away from anticipated failures, and can
move around presumed failures.

Mobile computation is also strongly related to recent hardware advances, since com-
putations move implicitly when carried on portable devices. In this sense, we cannot avoid
the issues raised by mobile computation: more than an avant-garde software technique, it
is an existing hardware reality.

In this paper, we discuss mobile computation at an entirely informal level; formal ac-
counts of our framework can be found in [13]. In Section 2 we describe the basic charac-
teristics of our existing computational infrastructure, and the difficulties that must be
overcome to use it effectively. In Section 3 we review existing ways of modeling distribu-
tion and mobility. In Section 4 we introduce an abstract model, the ambient calculus, that
attempts to capture fundamental features of distribution and mobility in a simple frame-
work. In Section 5, we discuss applications of this model to programming issues, including
a detailed example and a programming challenge.
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2  Three Mental Images
We begin by comparing and contrasting three mental images; that is, three abstracted views
of distributed computation. From the differences between these mental images we derive
the need for new approaches to global computation.

2.1  Local Area Networks

The first mental image corresponds to the now standard, and quickly becoming obsolete,
model of computation over local area networks. 

When workstations and PCs started replacing mainframes, local networks were invent-
ed to connect autonomous computers for the purpose of resource sharing. A typical local
area network consists of a collection of computers of about the same power (within a couple
of hardware generations) and of network links of about the same bandwidth and latency.
This environment is not always completely uniform: specialized machines may operate as
servers or as engineering workstations, and specialized subnetworks may offer optimized
services. Still, by and large, the structure of a LAN can be depicted as the uniform network
of nodes (computers) and links (connections) in Mental Image 1:

A main property of such a network is its predictability. Communication delays are
bounded, and processor response times can be estimated. Therefore, link and process fail-
ures can be detected by time-outs and by “pinging” nodes.

Another important property of local area networks is that they are usually well-admin-
istered and, in recent times, protected against attack. Network administrators have the task
of keeping the network running and protect it against infiltration. In the picture, the bound-
ary line represents an administrative domain, and the flames represent the protection pro-
vided by a firewall. Protection is necessary because local area networks are rarely
completely disconnected: they usually have slower links to the outside world, which are
however enough to make administrators nervous about infiltration.

Administrative Domain

Mental Image 1: Local Area Network
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The architecture of local area networks is very different from the older, highly central-
ized, mainframe architecture. This difference, and the difficulties implied by it, resulted in
the emergence of novel distributed computing techniques, such as remote-procedure-call,
client-server architecture, and distributed object-oriented programming. The combined aim
and effect of these techniques is to make the programming and application environment sta-
ble and uniform (as in mainframes). In particular, the network topology is carefully hidden
so that any two computers can be considered as lying one logical step apart. Moreover,
computers can be considered immobile; for example, they usually preserve their network
address when physically moved.

Even in this relatively static environment, the notion of mobility has gradually ac-
quired prominence, in a variety of forms. Control mobility, found in RPC (Remote Proce-
dure Call) and RMI (Remote Method Invocation) mechanisms, is the notion that a thread
of control moves (in principle) from one machine to another and back. Data mobility is
achieved in RPC/RMI by linearizing, transporting, and reconstructing data across ma-
chines. Link mobility is the ability to transmit the end-points of network channels, or re-
mote object proxies. Object mobility is the ability to move objects between different
servers, for example for load balancing purposes. Finally, in Remote Execution, a compu-
tations can be shipped for execution to a server (this is an early version of code mobility,
proposed as an extension of RPC [35]).

In recent years, distributed computing has been endowed with greater mobility prop-
erties and easier network programming. Techniques such as Object Request Brokers have
emerged to abstract over the location of objects providing certain services. Code mobility
has emerged in Tcl and other scripting languages to control network applications. Agent
mobility has been pioneered in Telescript [37], aimed towards a uniform (although wide
area) network of services. Closure mobility (the mobility of active and connected entities)
has been investigated in Obliq [11].

In due time, local area network techniques would have smoothly and gradually evolved
towards deployment on wide area networks, e.g. as was explicitly attempted by the COR-
BA effort. But, suddenly, a particular wide area network came along that radically changed
the fundamental assumptions of distributed computing and its pace of progress: the Web.

2.2  Wide Area Networks

Global computing evolved over the span of a few decades in the form of the Internet. But
it was not until the emergence of the Web that the peculiar characteristics of the Internet
were exposed in a way that anybody could verify with just a few mouse clicks. For clarity
and simplicity we will refer to the Web as the primary global information infrastructure,
although it was certainly not the first one.

We should remember that the notions of a global address space and of a global file sys-
tem have been popular at times as extensions of the mainframe architecture to wide area
networks. The first obvious feature of the Web is that, although it forms a global computa-
tional resource, it is nothing like a global mainframe, nor an extension of it. The Web does
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not support a global (updatable) file system and, although it supports a global addressing
mechanism, it does not guarantee the integrity of addressing. The Web has no single reli-
able component, but it also has no single failure point; it is definitely not the centralized all-
powerful mainframe of 1950’s science fiction novels that could be shut off by attacking its
single “brain”1. 

The fact that the Web is not a mainframe is not a big concern; we have already suc-
cessfully tackled distributed computing based on LANs. More distressing is the fact that
the Web does not behave like a LAN either. Many proposals have emerged along the lines
of extending LAN concepts to a global environment; that is, in turning the Internet into a
distributed address space, or a distributed file system. However, since the global environ-
ment does not have the stability properties of a LAN, this can be achieved only by intro-
ducing redundancy (for reliability), replication (for quality of service), and scalability (for
management) at many different levels. Things might have evolved in this direction, but this
is not the way the Web came to be. The Web is, almost by definition, unreliable, unpredict-
able, and unmanageable as a whole, and was not designed with LAN-like guarantees of ser-
vice.

Therefore, the main problem with the Web is that it is not just a big LAN, otherwise,
modulo issues of scale, we would already know how to deal with it. There are several ways
in which the Web is not a big LAN, and we will describe them shortly. But the fundamental
reason is that, unlike a LAN, the Web is not centrally administered. Instead, it is a dynamic

1. Still, a single faulty routing configuration file spread over the Internet in July 1997, 
causing the disappearance of a large number of Internet domains. In this case, the vul-
nerable “brain” was the collection of Internet routers.

Mental Image 2: Wide Area Network (for example, the Web)
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collection of countless independent administrative domains, all widely different and mutu-
ally distrustful. This is represented in Mental Image 2.

In that picture, computers differ greatly in power and availability, while network links
differ greatly in capacity and reliability. Large physical distances have visible effects, and
so do time zones. The architecture of a wide area network is yet again fundamentally dif-
ferent from that of a local area network. Most prominently, the network topology is dynam-
ic and non-trivial. Computers become intrinsically mobile: they require different
addressing when physically moved across administrative boundaries. Techniques based on
mobility become more important and sometimes essential. For example, mobile Java ap-
plets provided the first disciplined mechanism for running code able to (and allowed to)
systematically penetrate other people’s firewalls. Countless projects have emerged in the
last few years with the aim of supporting mobile computation over wide areas, and are be-
ginning to be consolidated.

At this point, our architectural goal might be to devise techniques for managing com-
putation over an unreliable collection of far-flung computers. However, this is not yet the
full picture. Not only are network links and nodes widely dispersed and unreliable; they are
not even liable to stay put, as we discuss next. 

2.3  Mobile Computing

A different global computing paradigm has been evolving independently of the Web. In-
stead of connecting together all the LANs in the world, another way of extending the reach
of a LAN is to move individual computers and other gadgets from one LAN to another, dy-
namically.

We discussed in the Introduction how the main characteristics of the Web point to-
wards mobile computation. However, that is meant as mobile computation over a fixed (al-
though possibly flaky) network. A more interesting picture emerges when the very
components of the network can move about. This is the field of mobile computing. Today,
laptops and personal organizers routinely move about; in the future entire networks will go
mobile (as in IBM’s Personal Area Network). Existing examples of this kind of mobility
include: a smart card entering a network computer slot; an active badge entering a room; a
wireless PDA or laptop entering a building; a mobile phone entering a phone cell.

We could draw a picture similar to Mental Image 1, but with mobile devices moving
within the confines of a single LAN. This notion of a dynamic LAN is a fairly minor ex-
tension of the basic LAN concepts, and presents few conceptual problems (wireless LANs
are already common). A much more interesting picture emerges when we think of mobile
gadgets over a WAN, because administrative boundaries and multiple access pathways
then interact in complex ways, as anybody who travels with a laptop knows all too well.

Mental Image 3 focuses on two domains: the United States and the European Union,
each enclosed by a political boundary that regulates the movement of people and comput-
ers. Within a political boundary, private companies and public agencies may further regu-
late the flow of people and devices across their doors. Over the Atlantic we see a third
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domain, representing Air France flight 81 travelling from San Francisco to Paris. AF81 is
a very active mobile computational environment: it is full of people working with their lap-
tops and possibly connecting to the Internet through airphones. (Not to mention the hun-
dreds of computers that control the airplane and let it communicate with a varying stream
of ground stations.)

Abstracting a bit from people and computation devices, we see here a hierarchy of
boundaries that enforce controls and require permissions for crossing. Passports are re-
quired to cross political boundaries, tickets are required for airplanes, and special clearanc-
es are required to enter (and exit!) agencies such as the NSA. Sometimes, whole mobile
boundaries cross in and out of other boundaries and similarly need permissions, as the mo-
bile environment of AF81 needs permission to enter an airspace. On the other hand, once
an entity has been allowed across a boundary, it is fairly free to roam within the confines
of the boundary, until another boundary needs to be crossed.

2.4  General Mobility

We have described two different notions of mobility. The first, mobile computation, has to
do with virtual mobility (mobile software). The second, mobile computing, has to do with
physical mobility (mobile hardware). These two fields are today almost disconnected, the
first dominated by a software community, and the second dominated by a hardware com-
munity. However, the borders between virtual and physical mobility are fuzzy, and even-
tually we will have to treat all kinds of mobility in a uniform way. Here are two examples
where the different forms of mobility interact.

The first example is one of virtual mobility achieved by physical means. Consider a
software agent in a laptop. The agent can move by propagating over the network, but can
also move by being physically transported with the laptop from one location to another. In
the first case, the agent may have to undergo security checks (e.g., bytecode verification)
when it crosses administrative domains. In the second case the agent may have to undergo
security checks (e.g., virus detection) when the laptop is physically allowed inside a new
administrative domain. Do we need two completely separate security infrastructures for

US

N SASFO

AF 81

EU
CDG

Mental Image 3: Mobile Computing
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these two cases, or can we somehow find a common principle? A plausible security policy
for a given domain would be that a physical barrier (a building door) should provide the
same security guarantees as a virtual barrier (a firewall).

The second example is one of physical mobility achieved by virtual means. Software
exists that allows remote control of a computer, by bringing the screen of a remote comput-
er on a local screen. The providers of such software may claim that this is just as good as
moving the computer physically, e.g. to access its local data. Moreover, if the remote com-
puter has a network connection, this is also equivalent to “stringing wire” from the remote
location, since the remote network is now locally accessible. For example, using remote
control over a phone line to connect from home to work where a high-bandwidth Internet
connection is available, is almost as good as having a high-bandwidth Internet connection
brought into the home.

The other side of the coin of being mobile is of becoming disconnected or intermittent-
ly connected. Even barring flaky networks, intermittent connectivity can be caused by
physical movement, for example when a wireless user moves into some form of Faraday
cage. More interestingly, intermittent connectivity may be caused by virtual movement, for
example when an agent moves in and out of an administrative domain that does not allow
communication. Neither case is really a failure of the infrastructure; in both cases, lack of
connectivity may in fact be a desirable security feature. Therefore, we have to assume that
intermittent connectivity, caused equivalently by physical or virtual means, is an essential
feature of mobility.

In the future we should be prepared to see increased interactions between virtual and
physical mobility, and we should develop frameworks where we can discuss and manipu-
late these interactions.

2.5  Barriers and Action-at-a-Distance

The unifying difficulty in both mobile computing and mobile computation is the prolifera-
tion of barriers, and the problems involved in crossing them. This central difficulty implies
that we must regard barriers as fundamental features of our computational models. This
seems contrary to the usual trend. 

Access barriers have arisen many times in the history of computing, and one of the
main tasks of computer science has been to “abstract them away”, often by the proverbial
additional level of indirection. For example, physical memory boundaries are circumvented
by virtual memory; address space boundaries are circumvented by network proxies; fire-
wall boundaries are circumvented by secure tunnels and agent sandboxing. Unfortunately,
when barriers are not purely technological it is not possible to completely abstract them
away. The crossing of administrative barriers must be performed by explicit bureaucratic
operations, such as exhibiting equipment removal passes and export licences.

Therefore, administrative barriers constitute a fundamental change to the way we com-
pute. Let’s review some historical scenarios that, because of barriers, have now become un-
realizable computing utopias.
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In the early days of the Internet, any computer could talk to any other computer by
knowing its IP number. We can now forget about flat IP addressing and transparent routing:
routers and firewalls effectively hide certain IP addresses from view and make them un-
reachable by direct means.

In the early days of programming languages, people envisioned a universal address
space in which all programs would live and share data, possibly with world-wide garbage-
collection, and possibly with strong typing to guarantee the integrity of pointers. We can
now forget about universal addressing: although pointers are allowed across machines on
a LAN (by network proxies), they are generally disallowed across firewalls. Similarly, we
can forget about transparent distributed object systems: some network objects will be kept
well hidden within certain domains, and reaching them will require effort.

In the early days of mobile agents, people envisioned agents moving freely across the
network on behalf of their owners. We can now forget about this kind of free-roaming. If
sites do not trust agents they will not allow them in. If agents do not trust sites to execute
them fairly, they will not want to visit them.

In general, we can forget about the notion of action-at-a-distance computing: the idea
that resources are available transparently at any time, no matter how far away. Instead, we
have to get used to the notion that movement and communication are step-by-step activi-
ties, and that they are visibly so: the multiple steps involved cannot be hidden, collapsed,
or rendered atomic.

The action-at-a-distance paradigm is still prevalent within LANs, and this is another
reason why LANs are different from WANs, where such an assumption cannot hold.

2.6  Why a WAN is not a big LAN

We have already discussed in the Introduction how a WAN exhibits a different set of ob-
servables than a LAN. But could one emulate a LAN on top of a WAN, restoring a more
familiar set of observables, and therefore a more familiar set of programming techniques?
If this were possible, we could then go on and program the Internet just like we now pro-
gram a LAN.

To turn a WAN into a LAN we would have to hide the new observables that a WAN
introduces, and we would have to reveal the observables that a WAN hides. These tasks
ranges from difficult, to intolerable, to impossible. Referring to the classification in the In-
troduction, we would have to achieve the following.

(A) Hiding virtual locations. We would have to devise a security infrastructure that
makes navigation across multiple administrative domains painless and transparent (when
legitimate). Although a great deal of cryptographic technology is available, there might be
impossibility results lurking in some corners. For example, it is far from clear whether one
can in principle guarantee the integrity of mobile computations against hostile or unfair
servers [33]. (This can be solved on a LAN by having all computers under physical super-
vision.)
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(B) Hiding physical locations. One cannot “hide” the speed of light; techniques such
as caching and replication may help, but they cannot fool processes that attempt to perform
long-distance real-time control and interaction. In principle, one could make all delays uni-
form, so that programs would not behave differently in different places. Ultimately this can
be achieved only by slowing down the entire infrastructure, by embedding the maximal
propagation delay in all communications. (This would be about 1/10 of a second on the sur-
face, but would grow dramatically as the Web is extended to satellite communication, or-
bital stations, and further away.)

(C) Hiding bandwidth fluctuations. It is possible to introduce service guarantees in
the networking infrastructure, and therefore eliminate bandwidth fluctuations, or reduce
them below certain thresholds. However, in overload situations this has the only effect of
turning network congestion into access failures, which brings us to the next point.

(D) Revealing failures. We would have to make failures as observable as on a LAN.
This is where we run into fundamental trouble. A basic result in distributed systems states
that we cannot achieve distributed consensus (such as agreeing on which nodes have failed)
in a system consisting of a collection of asynchronous processes [19]. The Web is such a
system: we can make no assumption about the relative speed of processors (they may be
overloaded, or temporarily disconnected), about the speed of communication (the network
may be congested or partitioned), about the order of arrival of messages, or even about the
number of processes involved in a computation. In these circumstances, it is impossible to
detect the failure of processors or of network nodes or links: any consensus algorithm can
be delayed indefinitely. The common partial solutions for this unsolvable problem are to
dictate some degree of synchrony and failure detection. These solutions work well on a
LAN, but they seem unlikely to apply to WANs simply because individual users may arbi-
trarily decide to turn off their processors without warning, or take them into unreachable
places. Other partial solutions involve multiple-round broadcast-based probabilistic algo-
rithms [9] which might be expensive on a WAN in terms of communication load, and
would be subject to light-speed delays. Moreover, it is difficult to talk about the failure of
processors that are invisible because they are hidden behind firewalls, and yet take part in
computations. Therefore, it seems unlikely that techniques developed to deal with asyn-
chrony in operating systems and LANs can be successfully applied to a WAN such as the
Web in full generality. The Web is an inherently asynchronous system, and the impossibil-
ity result of [19] applies with full force.

In summary: task (A) may be unsolvable for mobile code; in any case, a non-zero
amount of bureaucracy will always be required; task (B) is only solvable (in full) by intro-
ducing unacceptable delays; task (C) can be solved in a way that reduces it to (D); task (D)
is unsolvable in principle, and probabilistic solutions run into tasks (A) and (B).

2.7  WAN Postulates

We summarize this section by a collection of postulates that capture the main properties of
the reality we are interested in modeling:
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• Separate locations exist.

• Different locations have different properties, hence both people and programs will
want to move between them.

• Barriers to mobility will be erected to preserve certain properties of certain loca-
tions.

• Some people and some programs will still need to cross those barriers.

The point of these postulates is to stress that mobility and barrier crossing are inevitable
requirements of our current and future computing infrastructure.

The observables that are characteristic of wide area networks have the following im-
plications:

• Distinct virtual locations are observed because of the existence of distinct adminis-
trative domains, which are produced by the inevitable existence of attackers. Dis-
tinct virtual locations preclude the unfettered execution of actions across domains,
and require a security model.

• Distinct physical locations are observed, over large distances, because of the inevi-
table latency limit given by the speed of light. Distinct physical locations preclude
instantaneous action at a distance, and require a mobility model.

• Bandwidth fluctuations (including hidden failures) are observed because of the in-
evitable exercise of free will by network users, both in terms of communication and
movement. Bandwidth fluctuations preclude reliance on response time, and require
an asynchronous communication model.

3  Modeling Mobility
Section 2 was dedicated to showing that the reality of mobile computation over a WAN
does not fall into familiar categories. Therefore, we need to invent a new paradigm, or mod-
el, that can help us in understanding and eventually in taking advantage of this reality. 

Since the Web is, after all, a distributed system, it is worth reviewing the existing lit-
erature on models of distributed systems to see if there is something there that we can al-
ready use. Readers who are not interested or experienced in models of concurrency, may
skip ahead to Section 4.

3.1  Formalisms for Concurrency, Distribution, and Security

The π-calculus [30], along with its variations, is a prominent model of concurrency, and is
the starting point for our work. It is based on the notion of processes communicating over
channels, with the ability to create new channels and to exchange channels over channels.

We spend some time discussing why some of the basic assumptions of the π-calculus
and of other concurrent formalisms do not satisfy our particular needs.
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Static Connectivity
Some early paradigms for concurrency, such as Actors [3], allowed highly dynamic sys-
tems. However, the main formalized descriptions of concurrency began by considering
only static connectivity. This is the case for Petri Nets [10], for Hoare’s Communicating
Sequential Processes (CSP) [24], and for Milner’s Calculus of Communicating Systems
(CCS) [28]. In CCS, in particular, the set of communication channels that a processes has
available does not change during execution. In some versions of CSP (and in Occam [26])
the set of processes cannot change either. 

These models are insufficient for modeling mobility in a general sense. Instead, they
best characterize the situation in Mental Image 1, where the only form of mobility is the
mobility of data over communication channels.

Dynamic Connectivity
The π-calculus is an extension of CCS where channels can be transmitted over other chan-
nels, so that a process can dynamically acquire new channels. Channel transmission (also
called channel mobility) is a powerful extension of the basic communication model. The
transmission of a channel over another channel gives the recipient the ability to communi-
cate on that channel. It is perhaps best to think that a channel end-point has been transmit-
ted.

Let us consider a channel end-point that is transmitted across a domain boundary over
another channel that already crosses the boundary. If the transmitted end-point remains
functional, it provides a dynamically-established connection between the two sides of the
boundary. This is the kind of connection that firewalls typically forbid: opening arbitrary
network connections or allowing network-object proxy requests is not allowed without fur-
ther checks. The new channel that crosses the firewall could be seen as an implicit firewall
tunnel, but the establishment of trusted tunnels involves more than simply passing a chan-
nel over another one, otherwise the firewall would loose all control of security. 

A firewall must watch the communication traffic over each channel that crosses it; that
is, it must act as an intermediary and forwarder of messages between the outside and the
inside of a domain. If a channel end-point is seen passing through, the firewall must decide
whether to allow communication on that channel, and if so it must create a forwarder for it.
So, a channel through a firewall must really be handled as two channels connected by a fil-
ter [20].

Therefore, ability to communicate on a channel depends not only on possessing the
end-point of a channel, but also on where the other end-point of the channel is, and how it
got there. If the other end-point was sent through a firewall, then the ability to effectively
communicate on that channel depends on the attitude of the firewall.

Our approach: We provide a framework where processes exist in multiple disjoint lo-
cations, and such that the location of a process influences its ability to communicate with
other processes. Dynamic connectivity is achieved by movement, but movement does not
guarantee continued connectivity.
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Distribution
The π-calculus has no inherent notion of distribution. Processes exist in a single contiguous
location, by default, because there is no built-in notion of distinct locations and their effects
on processes. Interaction between processes is achieved by global, shared names (the chan-
nel names); therefore every process is assumed to be within earshot of every other process.
Incidentally, this makes distributed implementation of the original π-calculus (and of CCS)
quite hard, requiring some form of distributed consensus. 

Various proposals have emerged to make the π-calculus suitable for distributed imple-
mentation, and to extend it with location-awareness. The asynchronous π-calculus [25] is
obtained by a simple weakening of the π-calculus synchronization primitives. Asynchro-
nous messages simplify the requirements for distributed synchronization [32], but they still
do not localize the management of communication decisions. The join-calculus [20] ap-
proaches this problem by rooting each channel at a particular process; this provides a single
place where synchronization is resolved. LLinda [18] is a formalization of Linda [15] using
process calculi techniques; as in distributed versions of Linda, LLinda has multiple distrib-
uted tuple spaces, each with its local synchronization manager.

Our approach: We restrict communication to happen within a single location, so that
communication can be locally managed. In particular, interaction is by shared location, not
by shared names. Remote communication is modeled by a combination of mobility and lo-
cal communication.

Locality
By locality we mean here distribution-awareness: a process has some notion of the location
it occupies, in an absolute or relative sense.

A growing body of literature is concentrating on the idea of adding discrete locations
to a process calculus and considering failure of those locations [4, 21]. A notion of locations
alone is not sufficient, since locations could all really be in the “same place”. However, in
presence of failures one could observe that certain locations have failed and others have
not, and deduce that those locations are truly in different places, otherwise they would all
have failed at the same time. The distributed join-calculus [21], for example, adds a notion
of named locations, and a notion of distributed failure; locations form a tree, and subtrees
can migrate from one part of the tree to another, therefore becoming subject to different
failure patterns.

This failure-based approach aims to model traditional distributed environments, and
traditional algorithms that tolerate node failures. However, on the Internet, node failure is
almost irrelevant compared with inability to reach nodes. Web servers do not often fail for-
ever, but they frequently disappear from sight because of network or node overload, and
then they come back. Sometimes they come back in a different place, for example, when a
Web site changes its Internet Service Provider. Moreover, inability to reach a Web site only
implies that a certain path is unavailable; it implies neither failure of that site nor global un-
reachability. In this sense, a perceived node failure cannot simply be associated with the
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node itself, but instead is a property of the whole network, a property that changes over
time. 

Our approach: The notion of locality is induced not by failures, but by the need to cross
barriers. Barriers produce a non-trivial and dynamic topology of locations. Locations are
observably distinct because it takes effort to move between them, and because some loca-
tions may be “absent” and are distinguishable from locations that are “present”. Failure is
only represented, in a weak but realistic sense, as becoming forever unreachable.

Mobility
There are different senses in which people talk about “process mobility”; we try to distin-
guish between them.

A π-calculus channel is mobile in the sense that it can be transmitted over another
channel. Let’s imagine a process as having a mass, and its channels as springs connecting
it to other processes. When springs are added and removed by communication, the process
mass is pulled in different directions. Therefore, the set of channels of a process influences
its location, and a change of channels causes the process to change location. This is partic-
ularly clear if a process has a single active channel at any time, because a single spring will
strongly influence a process location. By this analogy, channel mobility can be interpreted
as causing process mobility. 

However, our desired notion of process mobility is tied to the idea of crossing domain
barriers. This is a very discrete, on-off, kind of mobility: either a process is inside a domain,
or it is not. Representing this kind of mobility by adding and removing channels is not im-
mediate. For example, if a π-calculus channel crosses a barrier (that is, if it is communicat-
ed to a process meant to represent a barrier), there is still no clear sense in which the process
has also crossed the barrier. In fact, the same channel may cross several disjoint domain
barriers, but a process should not exist in all those domains at once. Therefore, a π-calculus
process can be made to span several domains, which is something we would like to rule out
from the start. 

Our notion of process mobility is tied to the notion of nested domains. It still remains
to be seen how simple hierarchies, such as the ones we have emphasized in our mental im-
ages, can capture the sometimes complex relationships between administrative domains.
Still, some notion of domain nesting seems natural, and this is difficult to represent ade-
quately in process calculi like the π-calculus that are based on “flat” sets of processes.

Another, more direct, form of process mobility has been proposed: a process may
move by being transmitted over a channel to another process. This mechanism is not
present in the basic π-calculus, but is present in so-called higher-order π-calculi2. This is
certainly a form of process mobility of the kind found in mobile agent systems, where
“whole” and “alive” agents are transmitted over communication channels. However, there

2. The fact that the latter can be formally reduced to the former [34] is best ignored for 
this discussion.
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are a couple of details that should raise some concern, again having to do with domain
boundaries.

First, transmitting a process through a firewall over a channel relies on the existence
of a channel that already crosses a firewall. That is, we still have to separately model the
establishment of firewall tunnels. 

Second, if a process has connections before the move, does it maintain them on the oth-
er side of the firewall? If the answer is “yes”, then arbitrary channels can be made to pen-
etrate a firewall from the existence of a single channel. If the answer is “not necessarily”,
why and how do those other channels break? If the firewall acts as a filter, then it has to
analyze the processes that are passing though and their communication capabilities; this
may be considerably more complex than analyzing simple messages.

Third, transmitting a process over a channel is a copy rather than move operation.
Nothing prevents the original process from continuing, and nothing prevents the transmit-
ted process from being further replicated. That is, the idea that the same process moved
from here to there seems to be lost.

Our approach: mobility is not represented by passing channels over channels, nor by
passing processes over channels. It is represented by processes jumping across boundaries.
The identity of the moving process is preserved because a process that crosses a boundary
disappears from its previous location.

Security
It is possible to extend a concurrent calculus with cryptographic primitives, as in the spi cal-
culus extension of the π-calculus [2]. Much fundamental progress is being made in this di-
rection.

In our approach, security is not tied to cryptographic primitives, but on the ability or
inability to cross barriers, which is conferred by capabilities. Given the mechanisms al-
ready required to handle boundaries, the need for cryptographic extensions does not arise
immediately. For example, a boundary enclosing a piece of text can be seen as an encryp-
tion of the text, in the sense that a capability, the cryptokey, is needed to cross the boundary
and read the text. There is an unexpected similarity between a firewall surrounding a major
company and the encryption of a piece of data, both being barrier-based security mecha-
nisms at vastly different scales.

3.2  Formalisms for Reactivity

An important part of interacting and computing on the Web is being able to react to band-
width fluctuations in real time. We will not talk about this subject further, preferring to con-
centrate on the other computational observables discussed in the Introduction. We just note
that the vast literature on real-time reactive systems should be relevant in this context (e.g.,
see [6]), and that some Web-related work in this area has been carried out [12] and has
found applications [27].
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4  Ambients
We have now sufficiently discussed our design constraints and the deficiencies of existing
solutions, and we are finally ready to explain our own proposal in detail. We want to cap-
ture in an abstract way, notions of locality, of mobility, and of ability to cross barriers. To
this end, we focus on mobile computational ambients; that is, places where computation
happens and that are themselves mobile. 

4.1  Overview

Briefly, an ambient, in the sense in which we are going to use this word, is a place that is
delimited by a boundary and where computation happens. Each ambient has a name, a col-
lection of local processes, and a collection of subambients. Ambients can move in and out
of other ambients, subject to capabilities that are associated with ambient names. Ambient
names are unforgeable, this fact being the most basic security property.

In further detail, an ambient has the following main characteristics.

• An ambient is a bounded place where computation happens. 

If we want to move computations easily we must be able to determine what parts
should move. A boundary determines what is inside and what is outside an ambient,
and therefore determines what moves. Examples of ambients, in this sense, are: a
web page (bounded by a file), a virtual address space (bounded by an addressing
range), a Unix file system (bounded within a physical volume), a single data object
(bounded by “self”) and a laptop (bounded by its case and data ports). Non-exam-
ples are: threads (where the boundary of what is “reachable” is difficult to deter-
mine) and logically related collections of objects. We can already see that a
boundary implies some flexible addressing scheme that can denote entities across
the boundary; examples are symbolic links, URLs (Uniform Resource Locators)
and Remote Procedure Call proxies. Flexible addressing is what enables, or at least
facilitates, mobility. It is also, of course, a cause of problems when the addressing
links are “broken”.

• Ambients can be nested within other ambients, forming a tree structure. 

As we discussed, administrative domains are (often) organized hierarchically. Mo-
bility is represented as navigation across a hierarchy of ambients. For example, if
we want to move a running application from work to home, the application must be
removed from an enclosing (work) ambient and inserted in a different enclosing
(home) ambient. 

• Each ambient has a collection of local running processes.

A local process of an ambient is one that is contained in the ambient but not in any
of its subambients. These “top level” local processes have direct control of the am-
bient, and in particular they can instruct the ambient to move. In contrast, the local
processes of a subambient have no direct control on the parent ambient: this helps
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guaranteeing the integrity of the parent.

• Each ambient moves as a whole with all its subcomponents. 

The activity of a single local process may, by causing movement of its parent, influ-
ence the location, and therefore the activity, of other local processes and subambi-
ents. For example, if we move a laptop and reconnect it to a different network, then
all the threads, address spaces, and file systems within it move accordingly and au-
tomatically, and have to cope with their new surrounding. Agent mobility is a spe-
cial case of ambient mobility, since agents are usually single-threaded. Ambients,
like agents, automatically carry with them a collection of private data as they move.

• Each ambient has a name. 

The name of an ambient is used to control access (entry, exit, communication, etc.).
In a realistic situation the true name of an ambient would be guarded very closely,
and only specific capabilities based on the name would be handed out. In our exam-
ples we are usually more liberal in the handling of names, for the sake of simplicity.

We have developed and are still studying a formal calculus of ambients [13]. In this
paper we stay away from formalism; the essential features of the ambient calculus will be
conveyed by (fairly precise) metaphors.

As a first metaphor, already partially outlined, we can consider a foreign travel scenar-
io. A country with border guards can be seen as an example of a static ambient. Local of-
ficers (privileged processes) govern movement across the border and communication
within the border. Entry and exit capabilities (passports and visas) moderate mobility
across the border. Officers may decide who may join them as new officers.

As an example of a mobile ambient we may consider a tourist traveling to such a coun-
try. The tourist travels by being transported by another mobile ambient: a train, or airplane.
The tourist’s visas are checked on entry and exit. The tourist may be imprisoned within the
country (by withholding the exit capability) or, if not careful, even killed. On the other
hand, the tourist may be allowed to become a local officer (be naturalized), and in such a
function may act as a spy or a saboteur, sending out encrypted messages or disabling sub-
systems.

In the following section we discuss a more abstract metaphor that is easy to describe
and has an intuitive graphical presentation. It corresponds faithfully to the full, formal, am-
bient calculus.

4.2  The Folder Calculus: Mobility

In this office-style metaphor we represent an ambient as a folder. A folder confines its con-
tents: something is either inside or outside any given folder. Each folder has a name that is
written on the folder tag. Folders are naturally nested, and can be moved from place to
place. 
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The computational aspect of the calculus is represented by assuming that folders are
active. In addition to subfolders, folders may contain gremlins that cause the folder to move
around, and are moved together with their folder. 

We now describe the reductions (atomic computation steps) that can arise in the folder
calculus. Each reduction can happen at the “top level” of the computation (say, “on the
desktop”) or inside a folder. That is, the folder hierarchy is active at every level, with some
caveats noted below.

The Enter Reduction
Our first reduction causes a folder to enter another folder. On the left of the arrow, in the
figure below, the folder labeled n contains a gremlin that is ready to execute the instruction
in m (meaning: “let the surrounding folder enter a folder labeled m”), and then continue
with P. (The partial occlusion of P in the figure is meant to indicate that the instruction in
m must execute before P can be activated.) The collection of other gremlins and subfolders
that may be contained in n is represented by the letter Q, and similarly by R within m. A
folder labeled m happens to exist near the folder n, where “near” means “within the same
surrounding folder, or on the desktop”. 

In this situation the operation in m can execute, resulting in the configuration to the
right of the arrow. The result of the operation is that the folder n becomes a subfolder of the
folder m, and the gremlin who executed the instruction is ready to continue with P. The in-
struction in m has been consumed. Any other gremlins or subfolders in Q and R are un-
changed.

A reduction can happen only if the conditions on the left of the arrow are satisfied. That
is, in m executes only if there is a sibling folder labeled m. Otherwise, the operation remains
blocked until a sibling folder labeled m appears nearby. Such a folder may appear, for ex-
ample, because it moves near n, or because some of the gremlins in Q cause n to move near
it.

Many reductions can be simultaneously enabled, in which case one is chosen nonde-
terministically. For example, there could be two distinct folders labeled m near n, in which
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case n could enter either one. Also, there could be another gremlin, as part of Q, trying to
execute an in m operation, in which case exactly one of the gremlins would succeed. More-
over, there could be another gremlin in Q trying to execute an in p operation, and there
could be another folder labeled p near n, in which case the n folder could enter either m or p.

The Exit Reduction
Our second reduction is essentially the inverse of the previous one: two nested folders be-
come siblings. On the left of the arrow, the folder labeled n contains a gremlin that is ready
to execute the instruction out m (meaning: “let the surrounding folder exit its parent labeled
m”), and then continue with P. The parent folder is in fact labeled m.

In this situation the operation out m can execute, resulting in the configuration to the
right of the arrow. The result of the operation is that the folder n becomes a sibling of the
folder m, and the gremlin who executed the instruction is ready to continue with P. The in-
struction out m has been consumed. Any other gremlins or subfolders in Q and R are un-
changed.

The operation out m executes only if the parent folder is labeled m. Otherwise, the op-
eration remains blocked until a parent folder labeled m materializes. The parent may be-
come m, for example, because some of the gremlins in Q cause n to move inside a folder
labeled m, at which point out m can execute.

Again, several reductions may be enabled at the same time. For example, there could
be a gremlin in Q trying to execute an in p operation, and there could be a folder labeled p
in R. Then, the folder n could either exit m or enter p.

The Open Reduction
Our third reduction is used to discard a folder while keeping its contents. In the picture it is
helpful to imagine that there is a folder surrounding the entities on the left of the arrow, so
that open n followed by P is a gremlin of that folder, and n is one of its subfolders. The
gremlin is ready to execute the instruction open n (meaning: “let a nearby folder labeled n
be opened”), and then continue with P. A folder labeled n happens to exist nearby.

In this situation the operation open n can execute, resulting in the configuration to the
right of the arrow. The result of the operation is that the folder n is discarded, but its con-
tents Q are spilled in the place where the folder n used to be. The instruction open n has
been consumed, and the gremlin is ready to continue with P.
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As before, the operation open n is blocked if there are no folders labeled n nearby. If
there are several ones, any one of them may be opened.

The Copy Reduction
Our fourth reduction is used to replicate folders and all their contents. On the left of the ar-
row, a copy machine is ready to make copies of a folder P (actually, P could also be a grem-
lin or any collection of folders and gremlins). We should imagine that the original P is
firmly placed under the cover of the copy machine, and is compressed into immobility:
none of the gremlins or folders of P can operate or move around (otherwise the copy might
be “blurred”). However, as soon as a copy of P is made, that copy is free to execute.

The copy machine can produce a new copy of P and of all its contents at will (nobody
needs to push the copy button). After that, the copy machine can operate again, indefinitely.
So, on the right of the arrow we have the same configuration as on the left, plus a fresh copy
of P. We could think that copies of P are made on demand, whenever needed, rather than
being continuously produced.

Name Creation
The handling of names is a delicate and fundamental part of our calculus. Fortunately, it is
very well understood: it comes directly from the π-calculus. 

Name creation is an implicit operation, in the sense that there are no reductions asso-
ciated with it. It is represented below as the creation of a rubber stamp for a name n, which
can be used to stamp folder labels. Any number of folders can be stamped with the same
rubber stamp.

A rubber stamp is used not as much to give a name, as to give authenticity to a folder.
There are several components to this notion, and we need to stretch our office metaphor a
bit to make it fit with the intended semantics.

n

Q → QP

Open reduction

Popen n
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At a microscopic scale, each rubber stamp has slight imperfections that can be used to
tell which rubber stamp was used to stamp each particular folder. Therefore, the particular
name chosen for a rubber stamp is irrelevant: what is really important is the relationship
between a rubber stamp and the folders it has stamped. Humans, however, like to read
names, not microscopic imperfection, so we keep names associated with rubber stamps and
folder labels. Still, we are free to change those names at any time, as long as this is done
consistently for a rubber stamp, all its related folders, and all the other uses of the name on
the rubber stamp. This consistent renaming could be considered as a reduction, but it is sim-
ple enough to be considered as a basic equivalence between configurations of folders, ex-
pressing the fact that superficial names are not really important.

In our metaphor, a copy machine can be used to copy anything contained in a folder,
including rubber stamps. Therefore, even if we started with all the rubber stamps having
different names, eventually there might be multiple rubber stamps carrying the same name.
To make authenticity work, we have to assume that copy machines cannot copy rubber
stamps perfectly at the microscopic level: when a rubber stamp is replicated, a different set
of microscopic imperfections is generated. That is, rubber stamps are unforgeable by as-
sumption.

For all these reasons, two rubber stamps carrying the same name n are really two dif-
ferent rubber stamps. To preserve authenticity, we do not want these rubber stamps, and the
folders they stamp, to get confused. In our visual representation, we collect all the folders
stamped by a rubber stamp, and all the other occurrences of its name, within a dashed
boundary: this way we can always tell, graphically, which folders were authenticated by a
rubber stamp, even when different rubber stamps have the same name. 

This dashed border is a flexible boundary and can move about fairly freely (it is just a
bookkeeping device). We have three main invariants for where a dashed border can be
placed. First it must always be connected with its original rubber stamp. Second, it must
always enclose all the folders that have ever been stamped with its particular stamp and all
other occurrences of the name (e.g. within gremlin code); if a folder moves away, the
dashed boundary may have to be enlarged. Third, dashed boundaries for two rubber stamps
with the same name must not intersect; if we should ever need to do so we shall first sys-
tematically rename one of the two rubber stamps and the related names, so that there is no
confusion. The dashed boundaries for rubber stamps with different names can freely inter-
sect.
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It is allowable to nest dashed boundaries for rubber stamps with the same name: an oc-
currence of that name will refer to the closest enclosing rubber stamp, in standard block
scoping style.

Leaves of the Syntax
At the bottom of our syntax there is the inactive gremlin, which can be represented as an
empty border. The inactive gremlin has no reductions.

Inactive gremlins are often simply discarded or omitted. For example, multiple inac-
tive gremlins can be collapsed into one inactive gremlin, and a folder containing only one
inactive gremlin is usually represented as an empty folder.

Programs in the folder calculus are built from these foundations, by assembling collec-
tions of gremlins, folders, rubber stamps, and copy machines, and possibly placing them
inside other folders.

The Theoretical Power of Mobility
Before moving on to our next and final reduction, we pause and consider the operations we
have introduced so far. These operations are purely combinatorial, that is, they introduce
no notion of parameter passing, or message exchange. Also, they deal purely with mobility,
not with communication or computation of any familiar kind. Yet, they are computationally
complete: Turing machines can be encoded in a fairly direct way (see [13]). 

Moreover, very informally, it is possible to see an analogy between the Enter reduction
and increment, the Exit reduction and decrement, the Open reduction and test, and the Copy
reduction and iteration. Therefore all the ingredients for performing arithmetic are present,
and it is in fact possible to represent numbers as towers of nested folders, with appropriate
operations. 

Data structures such as records and trees can be represented easily, by nested folders;
folder names represent pointers into such data structures. Storage cells can be represented
as folders whose contents change in response interactions with other folders; in this case a
folder name represents the address of a cell.

Inactive grem lin
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=
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In summary, the mobility part of the Folder Calculus already has the full power of any
computationally complete language. In principle, one could use it as a graphical scripting
language for the office/desktop metaphor.

4.3  The Folder Calculus: Communication

Mobility is by itself a computationally complete paradigm. Still, we want to talk about com-
munication in a direct way; for example, gremlins may want to exchange names of folders
to visit. Representing communication within the existing set of mobility primitives is the-
oretically possible, but unbearably clumsy. So, our next task is to introduce communication
primitives that do not invalidate the principles described in Section 3, and that do not spoil
the folder metaphor. The primitives we introduce next are probably the simplest imagin-
able. In particular, they do not conflict with the notion of strict folder containment, and do
not duplicate mobility functionality.

The Read Reduction
We begin by introducing a new entity that can sit inside a folder: a message. To remain
within the office metaphor, we imagine writing messages onto throw-away Post-it notes
that are attached to the inside of folders.

A gremlin can write the name of a folder on a note, and can attach the note to the cur-
rent folder (the folder the gremlin is in). This is an output operation, and is represented
graphically by a message written on a note. We shall discuss shortly what are the particular
messages used in the folder calculus. More generally, we may imagine writing any kind of
data as a message; in this view, a note can be seen as nameless data file that is kept within
a folder.

Conversely, a gremlin can grab any note attached to the current folder, read its mes-
sage, discard the note, and proceed with the knowledge of the message. This is an input op-
eration, and is represented graphically by a process P with occurrences of the variable x
(written P{ x}) that is waiting for a note with a message to be bound to x.

The Read reduction is the interaction between input and output operations or, equiva-
lently, between message notes and input operations. In a situation where an input and an
output are present, the Read reduction can execute, resulting in the configuration on the
right of the arrow, which is simply P{ M}: the residual gremlin P that has read M into x. The

M

Output

Input

P { x}x
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note that appears on the left of the arrow is discarded: it is consumed by reading and does
not appear on the right. (If the note needs to persist, it can be replicated by a copy machine.)

An input operation blocks if there are no available messages. Several input operations
may contend for the same message and only one of them will obtain it and be able to pro-
ceed. An output operation, however, never blocks (it is asynchronous); it simply drops a
message in the current folder and has no continuation.

Inputs and outputs usually happen within a folder (although the reduction above allows
them to happen on the desktop). Within such a folder, the identity of the input or output
gremlins are not important: anybody can talk to anybody else, in the style of a chat room.
In practice, different folders will be dedicated to different kinds of conversation, so one can
make assumptions about what should be said and what can be heard in a given folder. This
idea gives rise to a type system for the folder calculus [14].

Messages and Capabilities
We can imagine many kinds of messages that can be written on Post-it notes. Here we focus
on messages that are capabilities: they allow the reader of a message to perform privileged
actions. There are two kinds of capabilities, used in different contexts: naming capabilities
and navigation capabilities. 

Naming capabilities are simply ambient names used as messages. A name n can be
seen as a capability to construct (and rubber-stamp) a folder named n. 

We have already seen the main navigation capabilities, implicitly. We have presented
the operations in n, out n and open n as three distinct operations followed by a continuation
P. In fact, they are special cases of a single operation M.P, where M is a navigation capa-
bility and P is the continuation after navigation. Given a name n, in n is the capability to
enter an ambient named n, out n is the capability to exit an ambient named n, and open n is
the capability to open an ambient named n. Navigation capabilities are extracted from nam-
ing capabilities, meaning that knowing n implies the ability to construct, for example, in n,
but knowing in n does not imply knowing n. 

Navigation capabilities can be composed into navigation paths. For example, in n. out
m. open p. out q is a path capability that can be written in a single message, read into an
input variable x, and executed in its entirety by x.P (assuming, of course, that the path can
be followed). It useful to have an empty navigation path, written here, such that here.P has
no effect and continues with P, and M.here = here.M = M.

→M P{ M}

Read reduction

P { x}x
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Example
This is an artificial example that uses each of the five folder reductions once. We use a sin-
gle dashed line for multiple rubber stamps when the order of nesting of dashed lines does
not matter. We remove rubber stamps when they are no longer needed.

 

The reader is encouraged to follow the reductions, comparing them with their definitions.
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Example: Adobe Distiller
Adobe Distiller is a program that converts files in Postscript format to files in Adobe Ac-
robat format. The program can be set up to work automatically on files that are placed in a
special location. In particular, when a user drops a Postscript file into an inbox folder, the
file is converted to Acrobat format and dropped into a nearby outbox folder.

The following figure describes such a behavior. The distiller folder contains the inbox
and outbox folders mentioned above; outbox is initially empty. The input folder contains
the file the user wants to convert, in the form of a message. The input folder contains also
a gremlin that moves the input folder into the inbox. (We can imagine that this piece of
gremlin code is generated automatically as a result of the user dragging the input folder into
the inbox folder.)

The inbox contains the program necessary to do the format conversion and drop the
result into the outbox. First, any input folder arriving into the inbox must be opened to re-
veal the Postscript file; this is done by the copy machine on the left. Then, any such file is
read; this is done by the copy machine on the right. As a result of each read, an output folder
is created to contain a result. Inside each output folder, a file is distilled (by the external
operation distill(x)) and left there as an output. The output folder is moved into the outbox
folder.

It should be noted that the program above represents highly concurrent behavior, ac-
cording to the reduction semantics of the folder calculus. Multiple files can be dropped into
the inbox and can be processed concurrently. The opening of the input folders and the read-
ing of their contents is done in a producer-consumer style. Moreover, each distilling pro-
cess may be executing while its output folder is traveling to the outbox. Representing this
behavior in an ordinary concurrent language would not be entirely trivial; here we have
been able to express it without cumbersome locking and synchronization instructions.
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Example: Synchronous Output
It is sometimes useful to know that a message has been read by somebody before proceed-
ing. Synchronous output is an output operation with a continuation that is triggered only
after the output message has been read.

Synchronous output is expressible within the folder calculus, if we assume that the cal-
culus has been extended to allow the exchange of pairs of values (this extension can in fact
be encoded within the calculus). Together with synchronous output, we need to define a
matching input operation. These new operations are depicted with additional striped bor-
ders in the figures.

The synchronous output of a message M is obtained by creating a fresh name, k, out-
putting (asynchronously) the pair M,k, and waiting for the appearance of a folder named k
before proceeding. 

The corresponding input operation for a variable x, is obtained by expecting an input pair
x,k, creating an empty folder named k (which triggers the synchronous output continua-
tion), and continuing with the normal use of the input x.

Therefore, when the process P starts running, it can assume that somebody has read the
message M.

4.4  Security

The folder calculus has built-in features that allow it to represent security and encryption
situations rather directly; that is, without extending the calculus with ad-hoc primitives for
encryption and decryption. In this section, we discuss a number of examples based on sim-
ple security protocols.

We should make clear here what we mean by security for the folder calculus. Security
problems arise at every level of a software system, not just at the cryptographic level. Given
any set of security primitives, and any system written with those primitives, one can ask
whether the system can be attached at the “low-level”, by attacking weaknesses in the im-
plementation of the primitives, or at the “high-level”, by attaching weaknesses in how the
primitives are used. Efforts are underway to study the security of high-level abstractions
under low-level attacks [1], but here we are only concerned with high-level attacks. That
is, we assume that an attacker has at its disposal only the primitives of the folder calculus.

M P open kM,k P=

k

Q Q
k= x,kx
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This is the kind of attack that a malicious party could mount against honest folders inter-
acting within a trusted server or over a trusted network. For example, even within a perfect-
ly trusted server, if a folder gives away its name a, it could be killed by an attacker
performing open a.

Authentication
In this example, a home folder is willing to let any folder in, but is willing to open only those
folders that are recognized as having originally come from home. Opening a folder implies
conferring top-level execution privilege to its gremlins, and this privilege should not be giv-
en to just anybody. A particular home gremlin that has execution privilege wants to leave
home and then wants to come back home and be given the same execution privilege it en-
joyed before.

The mechanism the home folder uses to recognize the gremlin is a pass: a use-once au-
thentication token. Passes are generated in the left-hand side of the figure below, where a
copy machine produces fresh configurations, each consisting of a new rubber stamp, a sin-
gle message (the pass) stamped by the rubber stamp, and a single open capability for the
name on the rubber stamp.

The traveling gremlin is on the right-hand side of the figure. It inputs a pass n by read-
ing a message into a variable x, and it eventually uses the pass to label a folder. The gremlin,
in the form of the folder g, takes a short walk outside and comes back. Then it exposes a
folder named n, which is opened by the corresponding open n capability that was left be-
hind. The gremlin P can then continue execution at the top level of home; for example, it
may read another pass and leave again.

Since the scope of each pass n is restricted by a locally-generated rubber stamp, the
capability open n is not at risk of ever opening some foreign folder. There are actually two
underlying security assumptions here. The first is that nobody can accidentally or mali-
ciously create a pass that matches n: this can be guaranteed in practice with arbitrarily high
probability. The other assumption is that nobody can steal the name n from the traveling
gremlin. This seems very hard or impossible to guarantee in general, particularly if the
gremlin visits a hostile location that disassembles the gremlin by low-level mechanisms
(below the abstraction level of the folder calculus). However, if the gremlin visits only
trusted locations through trusted networks (ones that preserve the abstractions of the folder
calculus), then no interaction can cause the gremlin to be unwillingly deprived of its pass.

hom e

open n

g

n

x

Pout g

out home. 
in home

n  x
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Nonces
A nonce is a use-once token that can be used to ensure the freshness of a message. In the
example below, a nonce is represented by a fresh name n. The folder a sends the nonce to
the folder b, where the nonce is paired with a message M and sent back.

The folder a then checks that the nonce returned by b is the same one that was sent to
b. This is achieved by creating an empty folder named by the returned nonce, and trying to
open that folder with the original nonce. If the test is successful, then a knows that the mes-
sage M is fresh: it was generated after the creation of n.

If nonce and msg are public names, then an attacker could disrupt this protocol by de-
stroying the message folders in transit. Even worse, an attacker could inject nonce and msg
folders into a or b containing misleading information or damaging code. If a and b have
already established shared keys, they can avoid these problems by exchanging and opening
only messages encrypted under the keys (this is discussed shortly).

An attacker could also impersonate a or b by creating folders with those names, and
could then intercept messages. However, the names of principals like a and b will normally
be closely guarded secrets, so that impersonation cannot happen. In contrast, capabilities
like in a will be given out freely, since the act of entering a folder cannot by itself cause
damage to the folder, even if who enters is malicious.

Shared Keys
A name can be used as a shared key, as long as it is kept secret and shared only by certain
parties. A shared key can be reused multiple times, e.g., to encrypt a stream of messages.

A message encrypted under a key k can be represented as a folder that contains the
message and whose label is k. We call such a folder a k-envelope for the message. Knowl-
edge of k (or, at least, of the capability open k) is required to open the folder and read the
message.

To continue the Authentication example, a traveling gremlin could carry a shared key
k, generated inside the home folder, and send messages back home inside k-envelopes. The
home folder could decrypt those messages by using the shared key. If the shared key is
unique to a particular gremlin, this has the effect of authenticating the source of the mes-
sages.

a b

open noncen

 n ’ m sg

M,n’

out b. in a

nonce

out a. in b
n

open msg

 x,n” n ”
Popen n
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In many classical distributed protocols, shared keys are assume to be distributed by un-
specified covert means, separately from ordinary communication on public channels. The
principals are assumed to have already established shared keys before they begin interact-
ing. The key distribution problems is left as a separate problem.

In our framework, which includes mobility, some aspects of key distribution can be
modeled explicitly. For example, a key can become shared between distant principals be-
cause they generate the key when they are in the same location, and then move apart. Or, a
courier folder can transport a key from a principal to another over a trusted network, and
then the principals can use the key to communicate over an untrusted network.

4.5  Textual Syntax

So far we have been relying on a visual syntax, but we are going to need some textual syn-
tax for writing further examples. The following table summarizes the folder calculus visual
syntax, and introduces the corresponding textual syntax. There is a one-to-one correspon-
dence between textual syntax and visual syntax; therefore, it is possible to freely mix them,
if desired, nesting either one inside the other. 

Correspondence Between Textual and Visual Syntax
We use P,Q,R to range over ambient and process expressions, and M,N to range over mes-
sage expressions. As shown in the table, the creation of a new name is written (νn)P where
the Greek letter ν (nu) binds the name n within the scope P. An ambient is written n[P]
where n is the ambient name, where the brackets denote the ambient boundary, and where
P is the contents of the ambient.

k

M

encryption: 

open k
P

generation of a fresh shared key k

decryption:
opening a k-envelope and reading the contents

plaintext M inside a k-envelope

k

 x
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Processes P,Q,R

Textual Syntax Visual Syntax Comments

(νn)P New name n in a scope P.

n[P] Folder (ambient) of name n and contents P.

M.P Action M followed by P.

P | Q
Two processes in parallel.
(Visually: contiguously placed in 2D.)

0 Inactive process (often omitted).

!P Replication of P.

�M� Output M.

(n).P Input n followed by P.

(P) Grouping.

P

n

n

P

PM

P Q

P

M

Pn

P
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The textual syntax for the folder calculus is in fact the full syntax of the ambient cal-
culus we were alluding to previously. Therefore, our folder calculus metaphor is quite ex-
act: the syntax and semantics of our formal ambient calculus [13] has now been completely
explained through the metaphor.

Example: Adobe Distiller
This is the textual representation of the example in Section 4.3.

5  Ideas for Wide Area Languages
The ambient calculus is a minimal formalism designed for theoretical study. Our final goal,
though, is to program the Internet; for this we are certainly going to need something more
elaborate and convenient than a formal calculus. Still, the basic constructs of the ambient
calculus represent our understanding of the fundamental properties of mobile computation
over wide area networks. Therefore, we aim to find programming constructs that are se-
mantically compatible with the principles of the ambient calculus, and consequently of
wide area networks.

These principles include (A) WAN-soundness: a wide area network language cannot
adopt primitives that entail action-at-a-distance, continued connectivity, or security bypass-
es, and (B) WAN-completeness: a wide area network language must be able to express the
behavior of web surfers and of mobile agents and users.

5.1  Related Languages

Many software systems have explored and are exploring notions of mobility and wide area
computation. Among these are:

Messages M,N

n
in n
out n

open n
here
M.N

A name
An entry capability
An exit capability
An open capability
The empty path of capabilities
The concatenation of two paths

distiller[
inbox[

!open input |
!(x) output[�distill(x)� | out inbox. in outbox]] | 

outbox[]]
|
input[�“%!PS...” � | in distiller. in inbox]
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• Obliq [11]. The Obliq language attacks the problems of remote execution and mo-
bility for distributed computing. It was designed in the context of local area net-
works. Within its scope, Obliq works quite well, but is not really suitable for
computation and mobility over the Web, just like most other distributed paradigms
developed in pre-Web days. 

• Telescript [37]. Our ambient model is partially inspired by Telescript, but is almost
dual to it. In Telescript, agents move whereas places stay put. Ambients, instead,
move whereas processes are confined to ambients. A Telescript agent, however, is
itself a little ambient, since it contains a “suitcase” of data. Some nesting of places
is allowed in Telescript.

• Java [23]. Java provides a working paradigm for mobile computation, as well as a
huge amount of available and expected infrastructure on which to base more ambi-
tious mobility efforts. The original Java mobility model, however was based on mo-
bility of code, not mobility of data or active computations. Data mobility has now
been achieved by the Java RMI extension, but computation mobility (e.g. for
threads or live objects) is still problematic.

• Linda [15]. Linda is a “coordination language” where multiple processes interact in
a common space (called a tuple space) by dropping and picking up tokens asynchro-
nously. Distributed versions of Linda exist that use multiple tuple spaces and allow
remote operations over those. A dialect of Linda [16] allows nested tuple spaces, but
not mobility of the tuple spaces.

• The Join Calculus Language [22] is an implementation of the distributed Join Cal-
culus. The plain Join Calculus introduced an original and elegant synchronization
mechanism, where a procedure invocation may be triggered by the join of multiple
partial invocations originating from different processes. The Distributed Join Cal-
culus extends the Join Calculus with an explicit hierarchy of locations. As we al-
ready mentioned, the nature of this calculus makes distributed implementation
relatively easy. Migration of locations is allowed within the hierarchy. Behavior of
the system under a failure model is being investigated.

• WebL [27] is a language that specializes on fetching and processing Web pages. It
uses service combinators [12] to retrieve streams of data from unreliable servers,
and it uses a sophisticated pattern matching sublanguage for analyzing structured
(but highly variable) data and reassembling it.

5.2  Wide Area Languages

We do not have a full-blown language or library to propose yet; what is more important
here is the general flavor of such a language or library. In this section we discuss program-
ming constructs that are directly inspired by the ambient calculus and that are not usually
found in standard programming environments. In the remaining sections we show a de-
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tailed example involving some of these constructs, and we speculate on a specific wide area
application that could hopefully be better written using a wide area language.

Ambients as a Programming Abstraction
Our basic abstraction is that of mobile computational ambients. The ambient calculus
brings this abstraction to an extreme, by representing everything in terms of ambients at a
very fine grain. In practice, to be useful as a programming abstraction, ambients would
have to be medium or large-grained entities. Ambient contents should include standard pro-
gramming subsystems such as modules, classes, objects, and threads. 

In that sense, ambients could be used simply as wrappers of ordinary software sub-
systems, for the purpose of rendering those subsystems mobile. An ambient library could
include mechanisms for creating empty ambients, adding threads, objects, and subambients
to them, allowing threads to communicate with other ambients, and, of course, allowing
ambients to move around. 

We should notice that the ability to smoothly move a collection of running threads is
almost unheard of in current software infrastructures. In this sense, ambients would be a
novel and non-trivial addition to our collection of programming abstractions.

Names vs. Pointers
The only way to use an ambient is by its name. No matter how we organize our hierarchies
of ambients, the only way to manipulate the resulting structure is by using ambient names.
These names are detached from their corresponding ambients; one may possess a name
without having immediate access to any ambient of that name. 

Therefore, names are like pointers, providing access to structures, but are only “sym-
bolic pointers”: more like file names and URLs than memory addresses. Like file names,
these pointers need not always denote the same structure: they denote any ambient of the
corresponding name, and this may change over time. When these pointers denote no ambi-
ent, they are not “broken” (like dangling pointers, or illegal file names) but rather “blocked”
until a suitable ambient becomes available. Of course, one might feel nervous about the
possibility of blocking whenever one tries to use a name. On the other hand, a blocked com-
putation can be unblocked by providing an appropriate ambient, thus modeling both dy-
namic linking and the installation of plug-ins.

In an ambient-based language, every pointer to a data structure or other resource out-
side of a given ambient should behave like a name. This is necessary to allow ambients to
move around freely without being restrained by immobile ties.

Locations
Ambients can be used to model both physical and virtual locations. Some physical locations
are mobile (such as airplanes) while others are immobile (such as buildings). Similarly,
some virtual locations are mobile (such as agents) while others are immobile (such as main-
frame computers). These mobility distinctions are not reflected in the semantics of ambi-
ents, but can be added as a refinement of the basic model, or embedded in type systems that
restrict the mobility of certain ambients.
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Migration and Transportation
Each ambient is completely self-contained, and can be moved at any time with all its run-
ning computations. If an ambient encloses a whole application, then the whole running ap-
plication can be moved without need to restart it or reinitialize it. In practice, an application
will have ties to the local window system, the local file system, etc. These ties, however,
should only be via ambient names. When moving the applications, the old window system
ambient, say, becomes unavailable, and eventually the new window system ambient be-
comes available. Therefore, the whole application can smoothly move and reconnect its
bindings to the new local environment. Some care will still be needed to restart in a good
state (say, to refresh the application window), but this is a minor adjustment compared to
what one would have to do if hard connections existed between the application and the en-
vironment [5].

Communication
The basic communication primitives of the ambient calculus are based on the asynchronous
model and do not support global consensus or failure detection. These properties should be
preserved by any higher-level communication primitives that may be added to the basic
model, so that the intended semantics of communication over a wide area networks is pre-
served.

The ambient calculus directly supports only local communication within an ambient.
Remote communication (for example, RPC) can be interpreted as mobile output packets
that transport and deposit messages to remote locations, wait for local input, and then come
back. The originator of an RPC call may block for the answer to come back before proceed-
ing, in the style of a synchronous call. In this interpretation, the outgoing and incoming
packets may get stuck for an arbitrary amount of time, or get lost. There may be no indica-
tion that the communication has failed, and therefore the invoking process may block for-
ever without receiving a communication exception. This is as it should be, since arbitrary
delays are indistinguishable from failures. (Note, though, that a time-out mechanism is eas-
ily implemented, by placing a remote invocation in parallel with another activity that waits
a certain time and, if the invocation has not completed, cause something else to happen.) 

Other examples of derived communication mechanisms include parent-child commu-
nication, and communication between siblings (perhaps aided by the common parent). All
these appear quite useful, and will likely need to be included in any convenient language.

Data Structures
Basic data structures, such as booleans and integers, can be encoded in terms of ambients,
but the encodings are not practical. Therefore, basic types should be taken as primitive, as
usual.

Ambients can directly express hierarchies, so it should not be surprising that they can
easily represent structured data types. For example, a record structure of the form {l1=e1,
..., ln=en} can be represented as:

r[l1[!( �e1�|open accessor)] | ... | ln[!( �en�|open accessor)]]
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where the name r is the address of the record, and the record fields li=ei are represented by
subambients of the record ambient. The values ei are placed into the subambients as out-
puts, waiting for an accessor ambient to go inside and read them.

The ambient semantics, though, is a bit richer than the minimum required for data
structures. For example, we would not normally want to allow the fields of a record to take
off and leave. Some possibilities supported by the ambient semantics are intriguing but
probably not worth the trouble, such as the ability to concatenate records by opening them
inside a new record.

Therefore, it would be prudent to build-in ordinary data structures, without relying too
much on the possibilities provided by the ambient semantics. Still, for ambients to work at
all we need these data structures to be mobile. Therefore, the “address” of a data structure
should be a proper ambient name, in the sense that it should provide blocking behavior on
access if needed.

Recursion
Many behaviors are naturally defined recursively. It is convenient to use a recursion con-
struct of the form, for example, rec X. P, representing a recursively defined process P where
any occurrence of X again denotes P. More generally, one can introduce mutually recursive
definitions, as done below when discussing resources. 

The ambient calculus embeds what is essentially an iteration construct, !P. In terms of
theoretical power, this is sufficient to encode recursion. As a programming construct,
though it is inconvenient, and is also hard to implement because of its flavor of unbounded
generation. So, for programming practice !P should be removed in favor of recursion facil-
ities.

Synchronization
Synchronization primitives are needed to coordinate the activities of multiple processes
within an ambient. In the ambient calculus, it is easy to represent basic synchronization
constructs, such as mutexes:

where the open instruction blocks until a mutex is released, and consumes the mutex.
A useful technique is to synchronize on the change of name of an ambient. That is, a

process may wait for an ambient to change its name to a given name, and another process
may perform the change to trigger the first process. Name change can be represented in the
ambient calculus, but not in a way that is atomic with respect to arbitrary actions (particu-
larly, movement) performed by other processes. A proper solution would require all the
processes in an ambient to synchronize on a mutex before any movement or name change.
This is a bit laborious; therefore it is convenient to introduce name change as a primitive
with the following atomic reduction:

release n; P @ n[] | P release a mutex called n, and do P
acquire n; P @ open n. P acquire a mutex called n, then do P

n[be m.P | Q] → m[P | Q]
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Static and Dynamic Binding
Wide area systems are outside the control of any single administrator, and therefore their
maintenance cannot rely entirely on static configurations. In programming language terms,
they cannot rely completely on static binding of variables. A programer who needs to
change a static binding can usually change it, recompile the program, and restart it. But one
cannot easily restart the Internet, or any large system deployed across it. Therefore some
form of dynamic binding is necessary. 

The names of the ambient calculus represent an unusual combination of static and dy-
namic binding. Formally, the names obey the classical rules of static scoping, including
consistent renaming, capture-avoidance, and block nesting. However, the navigation prim-
itives behave by dynamically binding a name to any ambient that has the right name. The
connection between a name and an ambient of that name is fully dynamic, much like in dy-
namic linking.

The basic ambient calculus does not have any definitional facilities, but these are clear-
ly needed when building any large-scale systems, or even medium scale examples. We are
going to need definitional facilities for both static and dynamic binding, corresponding to
the underlying semantic features.

Statically-bound definitions can be represented by fairly normal let constructions. A
process-producing definition can be written:

with a standard expansion semantics within the scope P’. For call-by-value parameter pass-
ing, assuming that V1...Vn are fully-evaluated messages, we have:

Dynamically bound definitions are much less routine, and more closely tied to the am-
bient semantics; we discuss them next.

Resources
In the mobile agent paradigm, sites differ from each other by the collection of resources that
they provide to visiting agents. Agents bind dynamically to these resources as they enter
the ambient. Similarly, it is natural to think of each ambient as providing a collection of lo-
cal resources, which could be seen as forming the interface, namespace, environment,
method suite, etc., of the ambient.

To this end, we introduce a mechanism of local resource definitions that is compatible
with the general ambient semantics, and can be easily explained in terms of the primitives
of Section 4. These resource definitions may occur only at the top level of an ambient, and
have the following form:

Note that the name f is not bound by this definition; it must be bound by a ν binder at some
sufficiently global level. This way, different resources named f can be provided in different

let f(x1...xn) = P; P’ (let f(x1...xn) be P within the scope P’)

f(V1...Vn) @ P{ x1←V1...xn←Vn}

def f(x1...xn) = P; (bind the resource f(x1...xn) to P within the ambient)
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ambients, and each use of the resource f will be relative to a given ambient. A typical such
resource could be the local window-system library.

A resource f can be invoked as follows, within an ambient where it is defined:

where the suffix “/here” indicates that a definition of f has to be found in the ambient where
f is invoked. In general, a path may be used in place of here, in which case the definition of
the resource is retrieved from the ambient obtained by following the path, and the invoca-
tion is executed there. In other words, the effect of f(V1...Vn)/p is to transport the invocation
f(V1...Vn) along the path p, and then to invoke it within the target ambient. This can be ex-
pressed by two rules that each transport an invocation one step further:

For example, we could have an expression such as the following:

producing, after the invocation f(3)/in n:

The definition and invocation of resources can be encoded in the pure ambient calcu-
lus; this way, resources automatically acquire an ambient-like flavor. In particular, if an
ambient has no definition for an invocation, the invocation blocks until the definition be-
comes available in the designated place. If an ambient has multiple definitions for an invo-
cation, any one of them may be used. If an ambient containing definitions is opened, its
definitions become definitions of its parent. 

Modularization
An ambient P that includes a collection of local definitions can be seen as a module, or a
class. More precisely, !P can be seen as a module or a class (since P there is inactive), while
any active P generated from it can be seen as a module instance or an object. 

The action of performing an open on such an ambient can be seen as importing from a
module or inheriting from a class, since ambient definitions are transplanted from one am-
bient to another. Moreover, one can regard the notation f(M)/p either in module-oriented
style as p.f(M) (the invocation of f(M) from the module at p), or in object-oriented style as
delegation [36] of f(M) to the object found at p.

When seen as modules or components, ambients have several interesting and unusual
properties. 

f(V1...Vn)/here @ P{ x1←V1...xn←Vn}

f(V1...Vn)/in n.p | n[Q] @ n[Q |f(V1...Vn)/p]
n[f(V1...Vn)/out n.p | Q] @ f(V1...Vn)/p | n[Q]

n[def x() = �1�; 
def f(y) = x()/here | (x’). �x’+y�] 

| f(3)/in n

n[def x() = �1�; 
def f(y) = x()/here | (x’). �x’+y�;
�4�] 
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First, ambients are first class modules, in the sense that one can choose at run time
which particular instance of a module to use.

Second, ambients support dynamic linking: missing subsystems can be added to a run-
ning system simply by placing them in the right spot. 

Third, ambients support dynamic reconfiguration. In most module and class systems,
the identity of individual modules is lost immediately after static or dynamic linking. Am-
bients, though, maintain their identity at run time. As a consequence, a system composed
of ambients can be reconfigured by dynamically replacing an ambient with another one.
The blocking semantics of ambient interactions allows the system to smoothly suspend dur-
ing a configuration transition. Moreover, the hierarchical nature of ambients allows the
modular reconfiguration of entire subsystem, not just of individual modules. Dynamic re-
configuration is particularly valuable in long-running and widely-deployed systems that
cannot be easily stopped (for example, in telephone switches); it is certainly no accident
that thinking about the Internet led us to this property.

Therefore, ambients can be seen as proper software components, according to a para-
digm often advocated in software engineering, where the components are not only replace-
able but also mobile.

Security
Ambient security is based on capabilities and on the notion that security checks are per-
formed at ambient boundaries, after which processes are free to execute until they need to
cross another boundary. This is a capability-based model of security, as opposed to a cryp-
tography-based model, or an access-control based model. 

These three models are all interdefinable. In our case, access control is obtained by us-
ing ambients to implement RPC-like invocations that have to cross boundaries and authen-
ticate every time. The cryptographic model is obtained by interpreting encryption keys as
ambient names, which are by assumption unforgeable. Then, encryption is given by wrap-
ping some content in an ambient of a given name, and decryption is obtained by either en-
tering or opening such an ambient given an appropriate capability (the decryption key).

Summary
We believe we have sufficiently illustrated how the ambient semantics naturally induces
unusual programming constructs that are well-suited for wide area computation. The com-
bination of mobility, security, communication, and dynamic binding issues has not been
widely explored yet at the language-design level, and certainly not within a unifying se-
mantic paradigm. We hope our unifying foundation will facilitate the design of such new
languages.

5.3  Example: Public Transportation

We now show an example of a program written in ambient notation. Some additional con-
structs used here have been introduced in the previous section.



40 Wednesday, April 14, 1999, 5:01 pm

This example emphasizes the mobility aspects of ambients, and the fact that an ambi-
ent may be transported from one place to another without having to know the exact route
to be followed. A passenger on a train, for example, only needs to know the destination sta-
tion, and need not be concerned with the intermediate stations a train may or may not stop
at.

In this example, there are three train stations, represented by ambients: stationA, sta-
tionB and stationC (of course, these particular ambients will never move). There are three
trains, also represented by ambients: a train from stationA to stationB originating at statio-
nA, and two trains between stationB and stationC, one originating at each end. There are
two passengers, again represented by ambients; joe and nancy. Joe wants to go from sta-
tionA to stationC by changing trains at stationB; nancy wants to go the other way.

We begin by defining a parametric process that can be instantiated to trains going be-
tween different stations at different speeds. The parameters are: stationX: the origin station;
stationY: the destination station; XYatX, the tag that the train between X and Y displays
when stationed at X; XYatY, the tag that the train between X and Y displays when stationed
at Y; tripTime, the time a train takes to travel between origin and destination.

The definition of a train begins with the creation of a new name, moving, that is inter-
mittently used as the name of the train. While the train is moving, passengers should not be
allowed to (dis)embark; this is achieved by keeping moving a secret name. The train begins
as an ambient with name moving, and contains a single recursive thread that shuttles the
train back and forth between two stations. Initially, the train declares itself to be a train be-
tween X and Y stationed at X, and waits some time for passengers to enter and exit. Then it
becomes moving, so passengers can no longer (dis)embark. It exits the origin station, trav-
els for the tripTime, enters the destination station, and declares itself to be the train between
X and Y at Y. Again, passengers can (dis)embark during the wait time at the station. Then

let train(stationX stationY XYatX XYatY tripTime) =
(ν moving) // assumes the train originates inside stationX

moving[rec T.
be XYatX. wait 2.0.
be moving. out stationX. wait tripTime. in stationY. 
be XYatY. wait 2.0. 
be moving. out stationY. wait tripTime. in stationX.
T];

stationA stationB stationC

trainAB

trainBC

trainBC
joe

nancy
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the train becomes moving again, goes back the other way, and then repeats the whole pro-
cess.

Next we have the configuration of stations and trains. We create fresh names for the
three stations and for the train tags. Then we construct three ambients for the three stations,
each containing an appropriately instantiated train.

Finally, we have the code for the passengers. Joe’s itinerary is to enter stationA, wait
to enter the train from A to B when it is stationed at A, exit at B, wait for the train from B to
C when it is stationed at B, exit at C and finally exit stationC. During the time that joe is
waiting to exit a train, he is blocked waiting for the train to acquire the appropriate tag. The
train could change tags at intermediate stations, but this would not affect joe, who is waiting
to exit at a particular station. When that station is reached, and the train assumes the right
tag, joe will attempt to exit. However, there is no guarantee that he will succeed. For exam-
ple, joe may have fallen asleep, or there may be such a rush that joe does not manage to exit
the train in time. In that case, joe keeps shuttling back and forth between two stations until
he is able to exit at the right station.

The code for nancy is similar, except that she goes in the other direction. Given the tim-
ing of the trains, it is very likely that nancy will meet joe on the platform at stationB.

In all this, joe and nancy are active ambients that are being transported by other ambi-
ents. Sometimes they move of their own initiative, while at other times they move because
their context moves. Note that there are two trains between stationB and stationC, which
assume the same names when stopped at a station. Joe and nancy do not care which of these
two train they travel on; all they need to know is the correct train tag for their itinerary, not

(ν stationA stationB stationC ABatA ABatB BCatB BCatC)
stationA[train(stationA stationB ABatA ABatB 10.0)] |
stationB[train(stationB stationC BCatB BCatC 20.0)] |
stationC[train(stationC stationB BCatC BCatB 30.0)] |

(ν joe)
joe[

in stationA. 
in ABatA. out ABatB. 
in BCatB. out BCatC. 
out stationC] |

(ν nancy)
nancy[

in stationC. 
in BCatC. out BCatB. 
in ABatB. out ABatA. 
out stationA]
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the “serial number” of the train that carries them. Therefore, having multiple ambients with
the same name simplifies matters.

When all these definitions are put together and activated, we obtain a real-time simu-
lation of the system of stations, trains, and passengers. A partial trace looks like this:

5.4  Challenge: A Conference Reviewing System

We conclude with the outline of an ambitious wide area application. The application de-
scribed here does not fit well with simple-minded Web-based technology because of the
complex flow of active code and stateful information between different sites, and because
of an essential requirement for disconnected operation. The application fits well within the
agent paradigm, but also involves the traversal of multiple administrative domains, and has
security and confidentiality requirements.

This is meant both as an example of an application that could be programmed in a wide
area language, and as a challenge for any such language to demonstrate its usability. We
hope that a language based on ambients or similar notions would cope well with this kind
of situation.

Description of the problem
The problem consists in managing a virtual program committee meeting for a conference.
The basic architecture was suggested to me by comments by Richard Connors, as well as
by my own experience with organizing program committee meetings and with using Web-
based reviewing software developed for ECOOP and other conferences.

In the following scenario, the first occurrence of each of the principals involved is
shown in boldface.

Announcement

A conference is announced, and an electronic submission form, signed by the conference
chair, is publicized.

nancy: moved in stationC
nancy: moved in BCatC
joe: moved in stationA
joe: moved in ABatA
joe: moved out ABatB
nancy: moved out BCatB
joe: moved in BCatB
nancy: moved in ABatB
nancy: moved out ABatA
nancy: moved out stationA
joe: moved out BCatC
joe: moved out stationC
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Submission

Each author fetches the submission form, checks the signature of the conference chair, and
activates the form. Once activated, the form actively guides most of the reviewing process.
Each author fills an instance of the form and attaches a paper. The form checks that none
of the required fields are left blank, electronically signs the paper with a signature key pro-
vided by the author, encrypts the attached paper, and finds its way to the program chair.
The program chair collects the submissions forms, and gives them a decryption key so that
they can decrypt the attached papers and verify the signatures of the authors. (All following
communications are signed and encrypted; we omit most of these details from now on.)

Assignment

The program chair then assigns the submissions to the committee members, by instructing
each submission form to generate a review forms for each assigned member. The review
forms incorporate the paper (this time signed by the program chair) and find their way to
the appropriate committee members.

Review

Each committee member is a reviewer, and may decide to review the paper directly, or to
send it to another reviewer. The review form keeps tracks of the chain of reviewers so that
it can find its way back when either completed or refused, and so that each reviewer can
check the work of the subreviewers. Eventually a review is filled. The form performs var-
ious consistency checks, such as verifying that the assigned scores are in range and that no
required fields are left blank. Then it finds its way back to the program chair.

Report generation

Once the review forms reach the program chair, they become report forms. The various
report forms for each paper merge with each other incrementally to form a single report
form that accumulates the scores and the reviews. The program chair monitors the report
form for each paper. If the reviews are in agreement, the program chair declares the form
an accepted paper report form, or a rejected paper review form.

Conflict resolution

If the reports are in disagreement, the program chair declares the form an unresolved re-
view form. An unresolved review form circulates between the reviewers and the program
chair, accumulating further comments, until the program chair declares the paper accepted
or rejected.

Notification

The report form for an accepted or rejected paper finds its way back to the author (minus
the confidential comments), with appropriate congratulations or regrets.

Final versions

Once it reaches the author, an accepted paper report form spawns a final submission form.
In due time, the author attaches to it the final version of the paper and signs the copyright
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release notice. The completed final submissions form finds its way back to the program
chair.

Proceedings

The final submission forms, upon reaching the program chair, merge themselves into the
proceedings. The program chair checks that all the final versions have arrived, sorts them
into a conference schedule, attaches a preface, and lets the proceedings find their way to the
conference chair. 

Publication

The conference chair files the copyright release forms, signs the proceedings, and posts
them to public sites.

Comments
A few critical features characterize this application as particularly well-suited for experi-
menting with wide area languages.

First, it is a requirement of this application that most interactions happen in absence of
connectivity. Virtual committee meetings occur over the span of one month of reviewing
and one or two weeks of discussion. It is highly unlikely that all the committee members
will be continuously near their main workstation, or any workstation, during such a span of
time. Yet, progress cannot be interrupted by the temporary absence of any one member.
Furthermore, progress cannot be interrupted by the absence of connectivity for any one
member: paper reviews are commonly done on airplanes, in doctors waiting rooms, in lines
at the Post Office, in cafe’s, etc. While a laptop or personal organizer can be easily carried
in those environments, continuous connectivity is far from easy to achieve. This is to be
contrasted with current web-based review systems, which require reviewers to sit at a con-
nected workstation while filling the review forms.

Second, form-filling requires semantic checking, which is best done while the form is
being filled. Therefore, active forms are required even during off-line operation. This is to
be contrasted with the filling of on-line Web-based review forms which require, in practice,
preparing reviews off-line on paper or in ASCII, and later typing them or pasting them la-
boriously into on-line forms in order to obtain the semantic checking. Alternatively, if the
review is simply e-mailed in ASCII, then the program chair has the considerable burden of
performing the parsing and semantic checking.

Third, unattended operations is highly desirable also for the program chair. The pro-
gram chair may go in vacation after the assignment phase and come back to find all the re-
port forms already merged, thanks to the use of active forms.

Fourth, the system must handle multiple administrative domains. Committee members
are intentionally selected to belong to widely diverse and dispersed institutions, many of
which are protected by firewalls. In this respect, this situation is different from classical of-
fice workflow on a local area network, although it shares many fundamental features with
it.
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Fifth, all the forms are active. This relieves various principals from the tedious and er-
ror-prone task of collecting, checking, and collating pieces of information, and distributing
them to the correct sets of other principals.

In summary, in this example, interactions between various parts of the system happen
over a wide area network. The people involved may be physically moving during or be-
tween interaction. As they move, they may transport without warning active parts of the
system. At other times, active parts of the system move by their own initiative and must
find a route to the appropriate principals wherever they are.

6  Conclusions
The global computational infrastructure has evolved in fundamental ways beyond standard
notions of sequential, concurrent, and distributed computational models. Mobile ambients
capture the structure and properties of wide area networks, of mobile computing, and of
mobile computation. The ambient calculus [13] formalizes these notions simply and pow-
erfully. It supports reasoning about mobility and security, and has an intuitive presentation
in terms of the folder calculus. On this basis, we can envision new programming method-
ologies, libraries and languages for global computation.

7  Acknowledgments
The ideas presented in this paper originated in the heated atmosphere of Silicon Valley dur-
ing the Web explosion, and were annealed by the cool and reflective environment of Cam-
bridge UK. I am deeply indebted to people in both locations, particularly to Andrew
Gordon, who is also a coauthor of related papers. In addition, Martín Abadi and Cédric
Fournet made comments and suggestions on recent drafts.

References
[1] Abadi, M., C. Fournet, and G. Gonthier, Secure implementation of channel abstractions.

Proc. of the Thirteenth Annual IEEE Symposium on Logic in Computer Science, 105-116, 1998.

[2] Abadi, M. and A.D. Gordon, A calculus for cryptographic protocols: the spi calculus. Proc.
of the Fourth ACM Conference on Computer and Communications Security, 36-47, 1997.

[3] Agha, G. A., Actors: a model of concurrent computing in distributed systems, MIT Press,
1986. 

[4] Amadio, R.M., An asynchronous model of locality, failure, and process mobility. Proc. CO-
ORDINATION 97, Lecture Notes in Computer Science 1282, Springer Verlag. 1997.

[5] Bharat, K. and L. Cardelli: Migratory applications , Proc. of the ACM Symposium on User In-
terface Software and Technology '95. 133-142. 1995.

[6] Berry, G. The foundations of Esterel. To appear in: Proof, Language and Interaction: Essays
in Honour of Robin Milner, G. Plotkin, C. Stirling and M. Tofte, eds. MIT Press, 1998.

[7] Berry, G. and G. Boudol, The chemical abstract machine. Theoretical Computer Science



46 Wednesday, April 14, 1999, 5:01 pm

96(1), 217-248, 1992.

[8] Boudol, G., Asynchrony and the π-calculus. Technical Report 1702, INRIA, Sophia-Antipo-
lis, 1992.

[9] Bracha, G. and S. Toueg, Asynchronous consensus and broadcast protocols. J.ACM 32(4),
824-840. 1985.

[10] Brauer, W., ed., Net theory and applications, Proc. of the Advanced Course on General Net
Theory of Processes and Systems, Hamburg, 1979. Lecture Notes in Computer Science 84.
Springer-Verlag. 1980. 

[11] Cardelli, L., A language with distributed scope. Computing Systems, 8(1), 27-59. MIT Press.
1995.

[12] Cardelli, L. and R. Davies. Service combinators for web computing. Proc. of the First Usenix
Conference on Domain Specific Languages, Santa Barbara. 1997. 

[13] Cardelli, L. and A.D. Gordon, Mobile ambients, in Foundations of Software Science and Com-
putational Structures, Maurice Nivat (Ed.), Lecture Notes in Computer Science 1378, Springer,
140-155. 1998.

[14] Cardelli, L. and A.D. Gordon, Types for mobile ambients. 1998 (to appear).

[15] Carriero, N. and D. Gelernter, Linda in context. Communications of the ACM, 32(4), 444-458,
1989.

[16] Carriero, N., D. Gelernter, and L. Zuck, Bauhaus Linda, in Object-Based Models and Lan-
guages for Concurrent Systems, P. Ciancarini, O. Nierstrasz and A. Yonezawa (Ed.), Lecture
Notes in Computer Science 924, Springer Verlag, 66-76. 1995.

[17] Chandra, T.D., S.Toueg, Unreliable failure detectors for asynchronous systems. ACM Sym-
posium on Principles of Distributed Computing, 325-340. 1991.

[18] De Nicola, R., G.-L. Ferrari and R. Pugliese, Locality based Linda: programming with ex-
plicit localities. Proc. TAPSOFT’97. Lecture Notes in Computer Science 1214, 712-726,
Springer Verlag. 1997.

[19] Fischer, M.J., N.A. Lynch, and M.S. Paterson, Impossibility of distributed consensus with
one faulty process. J.ACM 32(2), 374-382. 1985.

[20] Fournet, C. and G. Gonthier, The reflexive CHAM and the join-calculus. Proc. 23rd Annual
ACM Symposium on Principles of Programming Languages, 372-385. 1996. 

[21] Fournet, C., G. Gonthier, J.-J. Lévy, L. Maranget, D. Rémy, A calculus of mobile agents. Proc.
7th International Conference on Concurrency Theory (CONCUR'96), 406-421. 1996.

[22] Fournet, C., L. Maranget, The Join-Calculus language - documentation and user's guide,
<http://pauillac.inria.fr/join/>, 1997.

[23] Gosling, J., B. Joy and G. Steele, The Java language specification. Addison-Wesley. 1996.

[24] Hoare, C.A.R., Communicating sequential processes. Communications of the ACM 21(8),
666-678. 1978.

[25] Honda., K. and M. Tokoro, An object calculus for asynchronous communication. Proc.
ECOOP’91, Lecture Notes in Computer Science 521, 133-147, Springer Verlag, 1991.

[26] INMOS Ltd., occam programming manual. Prentice Hall. 1984.

[27] Kistler, T. and J. Marais. WebL - a programming language for the web. In Computer Net-
works and ISDN Systems, 30, 259-270. Elsevier, 1998.

[28] Milner, R., A calculus of communicating systems. Lecture Notes in Computer Science 92.
Springer Verlag. 1980.

[29] Milner, R., Functions as processes. Mathematical Structures in Computer Science 2, 119-141.



Wednesday, April 14, 1999, 5:01 pm 47

1992.

[30] Milner, R., J. Parrow and D. Walker, A calculus of mobile processes, Parts 1-2. Information
and Computation, 100(1), 1-77. 1992

[31] Morris, J.H., Lambda-calculus models of programming languages. Ph.D. Thesis, MIT, Dec
1968. 

[32] Palamidessi, C., Comparing the expressive power of the synchronous and the asynchro-
nous pi-calculus. Proc. 24th ACM Symposium on Principles of Programming Languages, 256-
265. 1997.

[33] Sander, A. and C. F. Tschudin, Towards mobile cryptography, ICSI technical report 97-049,
November 1997. Proc. IEEE Symposium on Security and Privacy, Spring 1998 (to appear).

[34] Sangiorgi, D. From π-calculus to higher-order π-calculus - and back, Proc. TAPSOFT '93.,
Lecture Notes in Computer Science 668, Springer Verlag. 1992.

[35] Stamos, J.W. and D.K. Gifford, Remote evaluation. ACM Transactions on Programming Lan-
guages and Systems 12(4), 537-565. 1990.

[36] Stein, L. A., Lieberman, H., and Ungar, D. 1988. A shared view of sharing: The treaty of Or-
lando. In Object-oriented concepts, applications, and databases, W. Kim and F. Lochowsky,
eds., 31-48. Addison-Wesley.

[37] White, J.E., Mobile agents. In Software Agents, J. Bradshaw, ed. AAAI Press / The MIT Press.
1996.


